
Implementing the Elliptic Curve Method
of Factoring in Reconfigurable Hardware

Kris Gaj
Soonhak Kwon
Patrick Baier

Paul Kohlbrenner
Hoang Le

Khaleeluddin Mohammed
Ramakrishna

Bachimanchi

George Mason University

GMU Team
Computer Engineer

/ Cryptographer Mathematicians/ Cryptographers

Soonhak Kwon
Ph.D in Mathematics,
Johns Hopkins University
Maryland, U.S
Visiting professor at GMU
on leave from
Sungkyunkwan
University, Suwon, Korea

Patrick Baier
D. Phil. in
Mathematics,
Oxford University
Oxford, U.K
Affiliated with George
Washington Univeristy

Kris Gaj
Ph.D in Electrical
Engineering,
Warsaw University
of Technology, Poland
Associate Professor
at George Mason
University

GMU Team
Hardware design

Hoang Le Ramakrishna Bachimanchi Khaleeluddin Mohammed

MS in Computer Engineering students
ECE Department

George Mason University
Virginia, U.S.A.

What is ECM?

Elliptic Curve Method of Factoring

Lenstra 1985 Phase 1

Brent, Montgomery 1986-87 Phase 2

 N

< 5 0 b its

q

Factoring time depends mainly on the size of factor q

ECM in the Number Field Sieve (NFS)

P o lynom ia l S e lec tion

L inea r A lgeb ra

S qua re R o o t

R e la tion C o llec tion

S iev ing T ria l F ac to rin g
(E C M)

200 -250 b it
num bers

Elliptic Curve
2 3 1 mod p (23)Y X X p= + + =

Points fullfiling the equation of the curve

0

5

10

15

20

25

0 5 10 15 20
X

Y special point
(point at infinity)
such that:
P P P

ϑ

ϑ ϑ

+

+ = + =

P=(6,19)

Q=(7,12)

R=P+Q=(13,7)

A

Addition
P=(3,13)

2P=P+P=(7,11)D

Doubling

∃ P:
all points of the curve

, 2 ,3 ,.............., , (1) , 2P P P nP n P P Pϑ= + =14444244443

Projective vs. Affine coordinates

• affine coordinates
• addition and doubling require inversion

• projective coordinates

• addition and doubling can be done without inversion

• projective coordinates for Montgomery
form of the curve

• addition and doubling do not require y coordinate
(y coordinate can be recovered from x and z at the end of a long
chain of computations)

pM P PP = (x : : z)

Pa=(XP, YP)

Pp=(xP, yP, zP)

(0 : : 0)ϑ =

ECM Algorithm

Inputs :
N – number to be factored
E – elliptic curve
P0 – point of the curve E : initial point
B1 – smoothness bound for Phase1
B2 – smoothness bound for Phase2

Outputs:
q - factor of N, 1 < q ≤ N

or FAIL

ECM algorithm – Phase 1
precomputations

0 0

0

1

1

0 0

1: such that - consecutive primes

 - largest exponent such that
2: (: :)

3: gcd(,)

4 : if 1
5: r

i

i

i

e
i ip

e
i i

Q Q

Q

k p p B

e p B
Q kP x z

q z N

q

← ≤

≤

← =

←

>

∏

eturn (factor of)
6: else
7: go to Phase 2
8: end if

q N

postcomputations

main computations

ECM algorithm – Phase 2

0 0 0

0

1 2

0

09: 1
10: for each prime to do
11: (, ,)

12: (mod)

13: end for
14: gcd(,)
15: if 1 then
16: return
17: else
18: return FAIL
19: end i

pQ pQ pQ

pQ

d
p B B

x y z pQ

d d z N

q d N
q

q

←
=
←

← ⋅

←
>

f

main computations

postcomputations

Phase 1 – Numerical example

N = 1 740 719 = 1279·1361

E : y2 = x3 + 14x + 1 (mod 1 740 719)
P0 = (5 : : 1)
B1 = 20
k = 24·32·5·7·11·13·17·19 = 232 792 560

kP0 = (707 838 : : 1 686 279)
gcd (1 686 279 ; 1 740 719) = 1361

Hierarchy of Elliptic Curve Operations
Host computer

ECM

k·P

P+Q 2P

x·y mod N x+y mod N x-y mod N

Scalar multiplicationTop level

Medium level

Point addition

Low level

Moduar
multiplication

Modular
addition

Modular
subtraction

Point doubling

Elliptic curve
point operations

Control
unit

Modular arithmetic
(ring operations)

Functional
units

Our architecture : Top-level view

Instruction
memory

Control
Unit

Phase1 &
Phase2

Global
memory

I/O

FPGA

RAM

Host
computer

Host computer
pre-computes
-E, P0, k

and
post-computes
- final gcds

ECM Units

ECM in Hardware

Previous Proof-of-Concept Design

Pelzl, Šimka, SHARCS Feb 2005

Kleinjung, Franke, FCCM Apr 2005

Priplata, Stahlke, IEE Proc. Oct 2005

Drutarovský, Fischer,

Paar

Modifications compared to Pelzl, Šimka
Internal vs. External control

Pelzl, Šimka Ours
Memory management

Pelzl, Šimka Ours
suboptimal use of bit tables & consolidation
memory space of memory resources

Functional units
Pelzl, Šimka Ours

Montgomery multiplier
Pelzl, Šimka Ours
Based on Based on

Tenca, Koc McIvor, McLoone
CHES 1999 et al.
IEEE Trans. Comp. Asilomar
2003 2003
word-based CPA full-length CSAs
and/or CSA word-length CPAstime

MUL ADD/SUB MUL1 MUL2 ADD/SUB

control ECM
units

ARM7

µC

host control ECM
unitshost

FPGA FPGA

Resources utilization in time – Phase 1

Area 100%

ADD/SUB
(6%)

MUL 1 (43%)

MUL 2 (43%)

Control
Unit
(8%) Time

Phase 2 Parameter D
D=30=2·3·5 D=210=2·3·5·7

Memory of ECM Unit
512 x 32

16·φ(D)+120 words 504 words

256 x 32 x 2
184 words

Phase 2 Execution Time
72.1 ms

35.5 ms

/ 2

Comparison with the Proof-of-Concept
Design by Pelzl and Šimka: Timing

(198-bit numbers N; B1 = 960, B2 = 57000)
527 ms

Phase 1 Phase 2

Factor of
x 9.3

32 ms

293 ms
Factor of

x 7.4
Factor of

x 15.0
72 ms

36 ms

Pelzl/Šimka Ours
D=30

Ours
D=210

Ours Pelzl/Šimka

Major Contributors to the speed up:

- Different design for the multiplier (x 5)

- Two multipliers working in parallel (x 1.9)

- Different parameter of Phase 2, D (x 2)

Comparison with the Proof-of-Concept
Design by Pelzl and Šimka

Resources (D=30)
ECM Units /

Virtex
2000E
FPGA

Memory
(BRAMs)

Area
(CLB Slices)

7

3

2 (1.3%)

44 (27%)

Pelzl/Šimka Ours

16%

6%

Factor of
x 22

Factor of
x 2.7 Factor of

x 2.33

Limited by
BRAMs

Limited by
CLB Slices

Pelzl/Šimka OursPelzl/Šimka Ours

Modifications compared to Pelzl, Šimka
Internal vs. External control

Pelzl, Šimka Ours
Memory management

Pelzl, Šimka Ours
suboptimal use of bit tables & consolidation
memory space of memory resources

Functional units
Pelzl, Šimka Ours

Montgomery multiplier
Pelzl, Šimka Ours
Based on Based on

Tenca, Koc McIvor, McLoone
CHES 1999 et al.
IEEE Trans. Comp. Asilomar
2003 2003
word-based CPA full-length CSAs
and CSA word-length CPAstime

MUL ADD/SUB MUL1 MUL2 ADD/SUB

Prime table

GCD-table

control ECM
units

ARM7

µC

host control ECM
unitshost

FPGA

Comparison with the Proof-of-Concept
Design by Pelzl and Šimka

Time x Area Product

Assuming the same control unit and the same
memory management

(i.e., significantly improved design in Pelzl/Šimka):

Improvement

Phase 1 x 3.4

Phase 2 x 5.6

Performance to cost ratio
Number of Phase 1 & Phase 2 operations

per second per $100

212

380

13
22

x 14
x 16

Virtex II

XC2V6000-6

High-performance

Spartan 3

XC3S5000-5

Low-cost

Spartan 3E

XC3S1600-5

Low-cost

Virtex 4

XC4VLX200-11

High-performance

FPGAs vs Microprocessors
Phase 1 & Phase 2

computations per second
339

276

Pentium 4 Xeon 2.8 GHz
9.1 x

7.4 x 37 4027

.68 x .93 x

GMP-ECM:
Phase1

optimizations
off

Virtex II

XC2V6000-6

Spartan 3

XC3S5000-5

GMP-ECM
All optimizations

on

Test
program

(No
optimizations)

Experimental testing using SRC 6
reconfigurable computer

Basic unit:
2 x Pentium Xeon 3 GHz

2 x Xilinx Virtex II FPGA
XC2V6000 running at 100 MHz

24 MB of the FPGA-board RAM

Fast communication interface
between the microprocessor board
and the FPGA board, 1600 MB/sSRC 6 from

SRC Computers

Multiple basic units can be connected
using Hi-Bar Switch and
Global Common Memory

Results of experimental testing using SRC 6
reconfigurable computer

2 3 4 51

1 2 2

3 4 5

6 2 6

3.6% 0.5% 0.4% 0.2%95.3%

0.5% 0.4%99.1%

2,249
1,368

177 36,289 145
81

6 2

3 4 5 3 4 5

2 3 4 5 6

µP

FPGA

µP
&

FPGA

Time
(µs)

Percentage

Percentage

Before optimization

After optimization

6

6 – Post-computations (µP)
5 – Transfer out (FPGA→ µP)
4 – Main computations (Phase 1 & 2) (FPGA)
3 – Transfer in (µP→FPGA)
2 – Pre-computations (µP)
1 – General pre-computations independent of NLegend:

100%= 38,060 µs

100%= 36,611 µs

Conclusions

Hardware implementations of ECM provide
a substantial improvement

vs. optimized software implementations
in terms of the performance to cost ratio

• low-cost FPGAs vs. microprocessors > 10 x

Best environment for prototyping
of hardware implementations of codebreakers

• general-purpose reconfigurable computers (e.g., SRC)

Best environment for the final design
of the cost-optimized cipher breaker

• special-purpose machines based on
• low-cost FPGAs (or ASICs for very high volumes)

Thank you!

Questions??
?

	Implementing the Elliptic Curve Method of Factoring in Reconfigurable Hardware
	GMU Team
	GMU Team
	Elliptic Curve
	Projective vs. Affine coordinates
	ECM Algorithm
	ECM algorithm – Phase 1
	ECM algorithm – Phase 2
	Phase 1 – Numerical example
	Hierarchy of Elliptic Curve Operations
	Our architecture : Top-level view
	Modifications compared to Pelzl, Šimka
	Resources utilization in time – Phase 1
	Phase 2 Parameter D
	Modifications compared to Pelzl, Šimka
	Performance to cost ratioNumber of Phase 1 & Phase 2 operations per second per $100
	FPGAs vs Microprocessors# Phase 1 & Phase 2 computations per second
	Questions???

