### Implementing the Elliptic Curve Method of Factoring in Reconfigurable Hardware

Kris Gaj Soonhak Kwon Patrick Baier <u>Paul Kohlbrenner</u> Hoang Le Khaleeluddin Mohammed Ramakrishna Bachimanchi

**George Mason University** 





### **GMU Team**

#### Computer Engineer / Cryptographer



#### Mathematicians/ Cryptographers





Kris Gaj Ph.D in Electrical Engineering, Warsaw University of Technology, Poland Associate Professor at George Mason University Soonhak Kwon Ph.D in Mathematics, Johns Hopkins University Maryland, U.S Visiting professor at GMU on leave from Sungkyunkwan University, Suwon, Korea Patrick Baier D. Phil. in Mathematics, Oxford University Oxford, U.K Affiliated with George Washington Univeristy

### **GMU Team**

#### Hardware design







Hoang Le

Ramakrishna Bachimanchi

Khaleeluddin Mohammed

MS in Computer Engineering students ECE Department George Mason University Virginia, U.S.A.

### What is ECM?

Elliptic Curve Method of Factoring





Factoring time depends mainly on the size of factor q

### **ECM in the Number Field Sieve (NFS)**



### **Elliptic Curve**

 $Y^2 = X^3 + X + 1 \mod p$  (p = 23)



+ special point *9*(point at infinity)such that:

 $P + \mathcal{G} = \mathcal{G} + P = P$ 



### **Projective vs. Affine coordinates**

• affine coordinates

$$P_a = (X_P, Y_P)$$

- addition and doubling require inversion
- projective coordinates

$$P_p=(x_P, y_P, z_P)$$

- addition and doubling can be done without inversion
- projective coordinates for Montgomery form of the curve
  - addition and doubling do not require y coordinate

     (y coordinate can be recovered from x and z at the end of a long chain of computations)

$$\mathbf{P}_{\mathbf{p}\mathbf{M}} = (\mathbf{x}_{\mathbf{P}}: : \mathbf{z}_{\mathbf{P}})$$

$$\mathcal{G} = (0::0)$$

## **ECM Algorithm**

### Inputs :

- N number to be factored
- *E* elliptic curve
- $P_0$  point of the curve *E* : initial point
- $B_1$  smoothness bound for Phase1
- $B_2$  smoothness bound for Phase2

### Outputs:

$$q - factor of N, \quad 1 < q \le N$$
  
or FAIL

## ECM algorithm – Phase 1

precomputations

1:  $k \leftarrow \prod_{p_i} p_i^{e_i}$  such that  $p_i$  - consecutive primes  $\leq B_1$ 

 $e_i$  - largest exponent such that  $p_i^{e_i} \leq B_1$ 

main computations

postcomputations

4: if q > 1

5: return q (factor of N)

2:  $Q_0 \leftarrow kP_0 = (x_{Q_0} : :z_{Q_0})$ 

6: else

7: go to Phase 2

3:  $q \leftarrow \gcd(z_{O_0}, N)$ 

8: end if

### ECM algorithm – Phase 2

09:  $d \leftarrow 1$ 10: for each prime  $p = B_1$  to  $B_2$  do 11:  $(x_{pQ_0}, y_{pQ_0}, z_{pQ_0}) \leftarrow pQ_0$ 12:  $d \leftarrow d \cdot z_{pO_0} \pmod{N}$ main computations 13: end for 14:  $q \leftarrow \gcd(d, N)$ postcomputations 15: if q > 1 then 16: return q17: else return FAIL 18:

19: end if

### **Phase 1 – Numerical example**

*N* = 1 740 719 = 1279·1361

$$E: y^{2} = x^{3} + 14x + 1 \pmod{1740719}$$
$$P_{0} = (5::1)$$
$$B_{1} = 20$$
$$k = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 = 232792560$$

*kP*<sub>0</sub> = (707 838 : : 1 686 279) gcd (1 686 279 ; 1 740 719) = **1361** 

## **Hierarchy of Elliptic Curve Operations**



### **Our architecture : Top-level view**



### **ECM in Hardware**

### **Previous Proof-of-Concept Design**

| Pelzl, Šimka,      | SHARCS    | Feb 2005 |
|--------------------|-----------|----------|
| Kleinjung, Franke, | FCCM      | Apr 2005 |
| Priplata, Stahlke, | IEE Proc. | Oct 2005 |

Drutarovský, Fischer,

Paar

## Modifications compared to Pelzl, Šimka



### **Resources utilization in time – Phase 1**



### **Phase 2 Parameter D**



#### **Phase 2 Execution Time**







Major Contributors to the speed up:

- Different design for the multiplier (x 5)
- Two multipliers working in parallel ( x 1.9 )

- Different parameter of Phase 2, D (x 2)

### Comparison with the Proof-of-Concept Design by Pelzl and Šimka <u>Resources (D=30)</u>



## Modifications compared to Pelzl, Šimka



### Comparison with the Proof-of-Concept Design by Pelzl and Šimka

### Time x Area Product

Assuming the same control unit and the same memory management

(i.e., significantly improved design in Pelzl/Šimka):

|         | <b>Improvement</b> |
|---------|--------------------|
| Phase 1 | x 3.4              |
| Phase 2 | x 5.6              |

## Performance to cost ratio Number of Phase 1 & Phase 2 operations per second per \$100



### FPGAs vs Microprocessors # Phase 1 & Phase 2 computations per second



### Experimental testing using SRC 6 reconfigurable computer



SRC 6 from SRC Computers

Basic unit:

- 2 x Pentium Xeon 3 GHz
- 2 x Xilinx Virtex II FPGA XC2V6000 running at 100 MHz

24 MB of the FPGA-board RAM

Fast communication interface between the microprocessor board and the FPGA board, 1600 MB/s

Multiple basic units can be connected using Hi-Bar Switch and Global Common Memory

### Results of experimental testing using SRC 6 reconfigurable computer



## Conclusions

Hardware implementations of ECM provide a substantial improvement vs. optimized software implementations in terms of the performance to cost ratio

• low-cost FPGAs vs. microprocessors > 10 x

#### **Best environment for prototyping**

of hardware implementations of codebreakers

general-purpose reconfigurable computers (e.g., SRC)

#### **Best environment for the final design**

of the cost-optimized cipher breaker

- special-purpose machines based on
  - Iow-cost FPGAs (or ASICs for very high volumes)

# Thank you!



# Questions?? ?